Regularized robust optimization: the optimal portfolio execution case

نویسندگان

  • Somayeh Moazeni
  • Thomas F. Coleman
  • Yuying Li
چکیده

An uncertainty set is a crucial component in robust optimization. Unfortunately, it is often unclear how to specify it precisely. Thus it is important to study sensitivity of the robust solution to variations in the uncertainty set, and to develop a method which improves stability of the robust solution. In this paper, to address these issues, we focus on uncertainty in the price impact parameters in an optimal portfolio execution problem. We first illustrate that a small variation in the uncertainty set may result in a large change in the robust solution. We then propose a regularized robust optimization formulation which yields a solution with a better stability property than the classical robust solution. In this approach, the uncertainty set is regularized through a regularization constraint, defined by a linear matrix inequality using the Hessian of the objective function and a regularization parameter. The regularized The authors would like to thank anonymous referees whose comments have improved the presentation of this paper. T.F. Coleman acknowledges funding from the Ophelia Lazaridis University Research Chair (which he holds) and the National Sciences and Engineering Research Council of Canada. The views expressed herein are solely from the authors. Y. Li acknowledges funding from Credit Suisse and the National Sciences and Engineering Research Council of Canada. S. Moazeni ( ) Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton Street, Princeton, NJ 08544, USA e-mail: [email protected] T.F. Coleman Department of Combinatorics and Optimization, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada e-mail: [email protected] Y. Li David R. Cheriton School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models

Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...

متن کامل

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

A Robust Knapsack Based Constrained Portfolio Optimization

Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...

متن کامل

Optimal Liquidation Strategies Regularize Portfolio Selection

We consider the problem of portfolio optimization in the presence of market impact, and derive optimal liquidation strategies. We discuss in detail the problem of finding the optimal portfolio under Expected Shortfall (ES) in the case of linear market impact. We show that, once market impact is taken into account, a regularized version of the usual optimization problem naturally emerges. We cha...

متن کامل

Robust portfolio selection with polyhedral ambiguous inputs

 Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2013